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Goal of this series of talks.

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics

2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: colimits

3 Representation theory.

4 MRS factorisation: A local system of coordinates for Hausdorff groups and
fine tuning between analysis and algebra.

5 This scope is a continent and a long route, let us, today, walk part of the
way together.
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Disclaimers.

Disclaimer I.– The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.

Disclaimer II.– Sometimes, absolute rigour is not followeda. In its place,
from time to time, we will seek to give the reader an intuitive feel for what
the concepts of category theory are and how they relate to our ongoing
research within CIP, CAP and CCRT.

aAll is assumed to be subsequently clarified on request though.

Disclaimer III.– The reader will find repetitions and reprises from the
preceding CCRT[n], they correspond to some points which were skipped or
uncompletely treated during preceding seminars.
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The Way We Live Now2 (after T. Gowers et al.’s
introduction).

Bertrand Russell, in his book The Principles of Mathematics, proposes the
following as a definition of pure mathematics.
Pure Mathematics is the class of all propositions of the form “p implies q,” where
p and q are propositions containing one or more variables, the same in the two
propositions, and neither p nor q contains any constants except logical constants.
And logical constants are all notions definable in terms of the following:
Implication, the relation of a term to a class of which it is a member, the notion
of such that, the notion of relation, and such further notions as may be involved
in the general notion of propositions of the above form. In addition to these,
mathematics uses a notion which is not a constituent of the propositions which it
considers, namely the notion of truth.
Russell’s book was published in 1903, and many mathematicians at that time
were preoccupied with the logical foundations of the subject. It could be said that
modern Mathematics is about everything that Russell’s definition leaves out1.

1Not disregarding what Russell and his forefathers taught us: logical dependence,
soundness of proofs, axiomatic method.

2Satirical novel by Anthony Trollope, published in London in 1875.
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Bits and pieces of representation theory
and how bialgebras arise

Wikipedia says

Representation theory is a branch of mathematics that studies abstract
algebraic structures by representing their elements as linear
transformations of vector spaces .../...
The success of representation theory has led to numerous generalizations.
One of the most general is in category theory.

As our track is based on Combinatorial Physics and
Experimental/Computational Mathematics, we will have a practical
approach of the three main points of view

Algebraic

Geometric

Combinatorial

Categorical
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Matters

1 Representation theory (or theories)
1 Geometric point of view
2 Combinatorial point of view (Ram and Barcelo manifesto)
3 Categorical point of view

2 From groups to algebras
Here is a bit of rep. theory of the symmetric group, deformations,
idempotents

3 Irreducible and indecomposable modules
4 Characters, central functions and shifts.

Here are (some of) Lascoux and Schützenberger’s results
5 Reductibility and invariant inner products

Here stands Joseph’s result
6 Commutative characters

Here are time-ordered exponentials, iterated integrals, evolution equations
and Minh’s results

7 Lie groups Cartan theorem
Here is BTT
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CCRT[29] A theory of Domains for Hyper- and
Polylogarithms.

Plan.

2 Goal of this series of talks.
3 Disclaimers.
4 The Way We Live Nowa (after T.
Gowers et al.’s introduction).
5 Bits and pieces of representation
theory
6 Matters
7 CCRT[29] A theory of Domains for
Hyper- and Polylogarithms.
8 Goal of this talk
9 Initial motivation (one of)
10 Initial motivation (one of)/2
11 Remarks
12 Remarks/2
13 Why do we code by words ?

14 Domain of HL•.
15 Domain of HL•/2
16 Particular case: The ladder of
polylogarithms
17 Useful properties
18 Independence of characters w.r.t.
polynomials.
19 Independence of characters w.r.t.
polynomials./2
20 Independence of characters w.r.t.
polynomials./3
23 Making (combinatorial) bialgebras
24 Dualizability
25 Dualizability/2
27 Main result about independence of

characters w.r.t.
30 Examples
31 Examples/2
32 Examples/3

33 Proof that [1Ω, log(z), log( 1
1−z

)]

is CR-free.
35 Magnus and Hausdorff groups
39 Proof (Sketch)
40 Proof (Sketch)/2
41 Conclusion(s): More applications
and perspectives.
42 Conclusion(s): More applications
and perspectives./2

aSatirical novel by Anthony Trollope, published in London in 1875.
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Goal of this talk

The goal of this talk is threefold:

1 A first shot about linear independence of characters of enveloping
algebras w.r.t. some algebras of nilpotents (Mathoverflow), extends
to bialgebras (cocommutative or not), two proofs. This result is one
of the three variations of a general theme [11].

2 Application to algebraic independence of some group of series w.r.t.
polynomials (built on formal power series).

3 More on the structure Hausdorff groups: One-parameter groups, local
system of coordinates, identities, motivations ...

Parts of this work are connected with Dyson series and take place within
the project: Evolution Equations in Combinatorics and Physics.

Conclusion(s): More applications and perspectives.
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Initial motivation (one of)
Lappo-Danilevskij’s setting
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Initial motivation (one of)/2

Let (ai )1≤i≤n be a family of complex numbers (all different) and
z0 /∈ {ai}1≤i≤n, then

Definition [Lappo-Danilevskij, 1928]

L(ai1 , . . . , ain |z0
γ
 z) =

∫ z

z0

∫ sn

z0

. . .
[ ∫ s1

z0

ds

s − ai1

]
. . .

dsn
sn − ain

.

+
z0

+
z

+ s1

+
s2 +

s3 +
s4

+
ai4

+
ai3

+
ai1

+
ai2

γ
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Remarks

1 The result depends only on the homotopy class of the path and then
the result is a holomorphic function on B̃ (B = C \ {a1, · · · , an})

2 From the fact that they are holomorphic, we can also study them in a
section i.e. an open (simply connected) subset like the following cleft
plane Ω

0
+

+

++

+

+

++ ++

a0

a1

a2

a3 a4

Figure: The cleft plane: one has an embedding H(B̃) ↪→ H(Ω).
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Remarks/2

3 The set of functions

αz
z0

(xi1 . . . xin︸ ︷︷ ︸
word

) = L(ai1 , . . . , ain︸ ︷︷ ︸
list

|z0
γ
 z)

(or 1H(B) if the word is void) has a lot of nice combinatorial
properties through its generating series∑

w∈X
αz
z0

(w)w

Noncommutative DE with left multiplier → Shuffle morphism
Linear independence → to be extended to larger sets of scalars
Factorisation → as characters
Possiblity of left or right multiplicative renormalization at a
neighbourhood of the singularities
Extension to (some) series
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Why do we code by words ?

In order to use the rich allowance of notations invented by algebraists, computer
scientists, combinatorialists and physicists about NonCommutative Formal Power
Series (NCFPSa), we have above coded the lists by words which will permit to do
linear algebra and topology on the indexing.

(ai1 , . . . , ain)→ w = xi1 . . . xin

Note that Lappo-Danilevskij recursion is from left to right, we have used here
right to left indexing to match with [6, 18, 21, 22] b

In particular, we will use the Kleene Star of series without constant term
defined by

S∗ = 1 + S + S2 + · · · = (1− S)−1

aSee the body of knowledge developed in the series of conferences like SLC
(Séminaire Lotharingien de Combinatoire) or FPSAC (Formal Power Series and
Algebraic Combinatorics).

bData structures are Letters in [6, 18] and Vector fields in [21].
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Domain of HL•.

We now have an arrow of commutative algebras

(C〈X 〉, x , 1X∗)
HL• (H(Ω),×, 1Ω)

on the left C〈X 〉 ↪→ C〈〈X 〉〉 is endowed with the Krull topology
(coefficientwise stationary convergence) and, on the right H(Ω) is
endowed with the (Fréchet) topology of compact convergence.
We are led to the following definition.

Definition [Domain of HL•]

We define Dom(HL•; Ω) (or Dom(HL•) if the context is clear) as the set
of series S =

∑
n≥0 Sn (where Sn =

∑
|w |=n〈S |w〉w , i.e. the

decomposition is done by homogeneous slices) such that
∑

n≥0 HL•(Sn, z)
converges unconditionallya for the compact convergence in Ω. One then
sets HL•(S , z) :=

∑
n≥0 HL•(Sn, z).

aIn order to use functional properties of H(Ω).
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Domain of HL•/2

Diagram

(C〈X 〉, x , 1X∗) C{HL(w , z)}w∈X∗(= SpanC{HL(w , z)}w∈X∗)

C〈〈X 〉〉 ⊃ Dom(HL•) H(Ω)

HL•

Proposition

With this definition, we have

1 Dom(HL•) is a shuffle unital subalgebraa of C〈〈X 〉〉 and then so is
Domrat(HL•) := Dom(HL•) ∩ Crat〈〈X 〉〉

2 For S ,T ∈ Dom(HL•), we have

HL•(SxT ) = HL•(S).HL•(T ) and HL•(1X∗) = 1H(Ω)

aThis is due to the fact that H(Ω) is nuclear, see [10].
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Particular case: The ladder of polylogarithms

(C〈X 〉, x , 1X∗) C{Liw}w∈X∗

(C〈X 〉, x , 1X∗)[x∗0 , (−x0)∗, x∗1 ] CZ{Liw}w∈X∗

Li•

Li
(1)
•

Domain of Li• (particular case of Dom(HL•))

In order to extend Li to series, we define Dom(Li ; Ω) (or Dom(Li)) if the context
is clear) as the set of series S =

∑
n≥0 Sn (decomposition by homogeneous

components) such that
∑

n≥0 LiSn(z) converges for the compact convergence in
Ω. One sets

LiS(z) :=
∑
n≥0

LiSn(z) (1)

Examples

Lix∗0 (z) = z , Lix∗1 (z) = (1− z)−1 ; Li(αx0+βx1)∗(z) = zα(1− z)−β
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Useful properties

Star of the plane property

Every conc-character is of the form
(∑

x∈X α(x) x
)∗

We will see that, with the common pattern (3 first examples)

w xϕ1X∗ = 1X∗ xϕw = w and

auxϕbv = a(uxϕbv) + b(auxϕv) + ϕ(a, b)(uxϕv)

We get the following examples

Shuffle: (αx)∗x(βy)∗ = (αx + βy)∗ (ϕ ≡ 0)

Stuffle: (αyi )
∗ (βyj)

∗ = (αyi + βyj + αβyi+j)
∗ (ϕ(yi , yj) = yi+j)

q-infiltration:
(αx)∗ ↑q (βy)∗ = (αx + βy + αβqδx ,yx)∗ (ϕ(x , y) = qδx ,yx)

Hadamard: (αa)∗ � (βb)∗ = 1X∗ if a 6= b and (αa)∗ � (βa)∗ = (αβa)∗
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Independence of characters w.r.t. polynomials.
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Independence of characters w.r.t. polynomials./2

Let g be a Lie algebra over a ring k without zero divisors, U = U(g) be its
enveloping algebra. As such, U is a Hopf algebra. We note ε its counit and set
U+ = ker(ε). We build the following filtrations (N ≥ 0)

UN = UN
+ = U+. . . . .U+︸ ︷︷ ︸

N times

(1)

(in fact U0 = U ,UN+1 = U .UN) and, for N ≥ −1

U∗N = U⊥N+1 = {f ∈ U∗|(∀u ∈ UN+1)(f (u) = 0)} (2)

the first one is decreasing and the second one increasing (in particular
U∗−1 = {0}, U∗0 = k .ε).
One shows easily that, for p, q ≥ 0 (with � as the convolution product)

U∗p � U∗q ⊂ U∗p+q

so that U∗∞ = ∪n≥0 U∗n is a convolution subalgebra of U∗.
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Independence of characters w.r.t. polynomials./3

Now, we can state the

Theorem (From MO, k ring without zero divisors)

The set of characters of (U , ., 1U ) is linearly free w.r.t. U∗∞.

Remark

i) U∗∞ is a commutative k-algebra.
ii) The title (“Independence of characters ...”) comes from the fact that,
with (k〈X 〉, conc , 1) (non commutative polynomials), k a Q-algebra
(without zero divisors) and one of the usual comultiplications (with ∆+

cocommutative and nilpotent, as co-shufflle, co-stuffle or - commutatively
- deformed), if one takes g as the space of primitive elements, we have
U∗ = k〈〈X 〉〉 (series) and U∗∞ = k〈X 〉.
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With Y = {yi}i≥1, one can see the product uxϕv as a sum indexed by paths
(with right-up-diagonal steps) within the grid formed by the two words (u
horizontal and v vertical, the diagonal steps corresponding to the factors ϕ(a, b))

•
A

•B

y3 y2 y5

y2

y1

Computation of y2y1 xϕy3y2y5

For example, the path

•
A

•B

y3 y2 y5

y2

y1

evaluates as ϕ(y2, y3)y2y5y1
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the path

•
A

•B

y3 y2 y5

y2

y1

reads y3ϕ(y2, y2)ϕ(y1, y5).

We have the following

Theorem (Radford theorem for xϕ)

Let k be a Q-algebra (associative, commutative with unit) such that

xϕ : k〈X 〉 ⊗ k〈X 〉 → k〈X 〉

is associative and commutative then

(Lyn(X )xϕα)α∈N(Lyn(X )) is a linear basis of k〈X 〉.
This entails that (k〈X 〉, xϕ, 1X∗) is a polynomial algebra with
Lyn(X ) as transcendence basis.
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Making (combinatorial) bialgebras

Proposition

Let k be a commutative ring (with unit). We suppose that the product ϕ is
associative, then, on the algebra (k〈X 〉, xϕ, 1X∗), we consider the
comultiplication ∆conc dual to the concatenation

∆conc(w) =
∑
uv=w

u ⊗ v (2)

and the “constant term” character ε(P) = 〈P|1X∗〉.
Then

(i) With this setting, we have a bialgebra a.

Bϕ = (k〈X 〉, xϕ, 1X∗ ,∆conc , ε) (3)

(ii) The bialgebra (eq. 3) is, in fact, a Hopf Algebra.

aCommutative and, when |X | ≥ 2, noncocommutative.
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Dualizability

If one considers ϕ as defined by its structure constants

ϕ(x , y) =
∑
z∈X

γzx ,y z

one sees at once that xϕ is dualizable within k〈X 〉 iff the tensor γzx ,y is
locally finite in its contravariant place “z” i.e.

(∀z ∈ X )(#{(x , y) ∈ X 2|γzx ,y 6= 0} < +∞) .

Remark

Shuffle, stuffle and infiltration are dualizable. The comultiplication
associated with the stuffle with negative indices is not.
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Dualizability/2

In the case when xϕ is dualizable, one has a comultiplication

∆xϕ
: k〈X 〉 → k〈X 〉 ⊗ k〈X 〉

such that, for all u, v ,w ∈ X ∗

〈uxϕv |w〉 = 〈u ⊗ v |∆xϕ(w)〉 (4)

Then, the following
B∨ϕ = (k〈X 〉, conc , 1X∗ ,∆xϕ , ε) (5)

is a bialgebra in duality with Bϕ (not always a Hopf algebra although B was so,
for example, see B with xϕ =↑q i.e. the q-infiltration).

The interest of these bialgebras is that they provide a host of
easy-to-within-compute bialgebras with easy-to-implement-and-compute set of
characters through the following proposition.
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Proposition (Conc-Bialgebras)

Let k be a commutative ring, X a set and ϕ(x , y) =
∑

z∈X γ
z
x,y z an associative

and dualizable law on k.X . Let xϕ and ∆xϕ be the associated product and
co-product. Then:
i) B = (k〈X 〉, conc , 1X∗ ,∆xϕ

, ε) is a bialgebra which, in case Q ↪→ k, is an
enveloping algebra iff ϕ is commutative and ∆+

xϕ
nilpotent.

ii) In the general case S ∈ k〈〈X 〉〉 = k〈X 〉∨ is a character for
A = (k〈X 〉, conc , 1X∗) (i.e. a conc-character) iff it is of the form

S = (
∑
x∈X

αx x)∗ =
∑
n≥0

(
∑
x∈X

αx x)n and, with this notation (6)

(
∑
x∈X

αx x)∗xϕ(
∑
x∈X

βy y)∗ =

∑
z∈X

(αz + βz) z +
∑

x,y∈X

αxβy ϕ(x , y)

∗ (7)

GD, Darij Grinberg and Hoang Ngoc Minh Three variations on the linear
independence of grouplikes in a coalgebra, [arXiv:2009.10970]

GD, Quoc Huan Ngô and V. Hoang Ngoc Minh, Kleene stars of the plane,
polylogarithms and symmetries, (pp 52-72) TCS 800, 2019, pp 52-72.
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Main result about independence of characters w.r.t.

Theorem (G.D., Darij Grinberg, H. N. Minh)

Let B be a k-bialgebra. As usual, let ∆ = ∆B and ε = εB be its
comultiplication and its counit.
Let B+ = ker(ε). For each N ≥ 0, let BN+ = B+ · B+ · · · · · B+︸ ︷︷ ︸

N times

, where

B0
+ = B. Note that

(
B0

+,B1
+,B2

+, . . .
)

is called the standard decreasing
filtration of B.
For each N ≥ −1, we define a k-submodule B∨N of B∨ by

B∨N = (BN+1
+ )⊥ =

{
f ∈ B∨ | f

(
BN+1

+

)
= 0
}
. (8)

Thus,
(
B∨−1,B∨0 ,B∨1 , . . .

)
is an increasing filtration of B∨∞ :=

⋃
N≥−1 B∨N

with B∨−1 = 0.
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Theorem (DGM, cont’d)

Let also Ξ(B) be the monoid (group, if B is a Hopf algebra) of characters
of the algebra (B, µB, 1B).
Then:

(a) We have B∨p ~ B∨q ⊆ B∨p+q for any p, q ≥ −1 (where we set
B∨−2 = 0). Hence, B∨∞ is a subalgebra of the convolution algebra B∨.

(b) Assume that k is an integral domain. Then, the set Ξ(B)× of
invertible characters (i.e., of invertible elements of the monoid Ξ(B) )
is left B∨∞-linearly independent.

Remark

The standard decreasing filtration of B is weakly decreasing, it can be
stationary after the first step. An example can be obtained by taking the
universal enveloping bialgebra of any simple Lie algebra (or, more
generally, of any perfect Lie algebra); it will satisfy

⋂
n≥0 Bn+ = B+.
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Corollary

We suppose that B is cocommutative, and k is an integral domain.
Let (gx)x∈X be a family of elements of Ξ(B)× (the set of invertible
characters of B), and let ϕX : k[X ]→ (B∨,~, ε) be the k-algebra
morphism that sends each x ∈ X to gx . In order for the family (gx)x∈X (of
elements of the commutative ring (B∨,~, ε)) to be algebraically
independent over the subring (B∨∞,~, ε), it is necessary and sufficient that
the monomial map

m : N(X ) → (B∨,~, ε),

α 7→ ϕX (Xα) =
∏
x∈X

gαx
x (9)

(where αx means the x-th entry of α) be injective.
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Examples

Let k be an integral domain, and let us consider the standard bialgebra
B = (k[x ],∆, ε) For every c ∈ k, there exists only one character of k[x ]
sending x to c ; we will denote this character by (c .x)∗ ∈ k[[x ]] (motivation
about this notation is Kleene star). Thus, Ξ (B) = {(c .x)∗ | c ∈ k}. It is
easy to check that (c1.x)∗x (c1.x)∗ =

(
(c1 + c2).x

)∗
for any ci ∈ k (‡).

Thus, any c1, c2, . . . , ck ∈ k and any α1, α2, . . . , αk ∈ N satisfy

((c1.x)∗)
xα1 x ((c2.x)∗)

xα2 x · · · x ((ck .x)∗)
xαk

=
(
(α1c1 + α2c2 + · · ·+ αkck).x

)∗
. (10)

From (‡) above, the monoid Ξ (B) is isomorphic with the abelian group
(k,+, 0); in particular, it is a group, so that Ξ (B)× = Ξ (B).
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Examples/2

Take k = Q (the algebraic closure of Q) and cn =
√
pn ∈ k, where pn is

the n-th prime number. What precedes shows that the family of series(
(
√
pnx)∗

)
n≥1

is algebraically independent over the polynomials (i.e., over

Q[x ]) within the commutative Q-algebra
(
Q[[x ]], x , 1

)
. This example can

be double-checked using partial fractions decompositions as, in fact,

(
√
pnx)∗ =

1

1−√pnx
(this time, the inverse is taken within the ordinary

product in k[[x ]]) and( 1

1−√pnx

)x n
=

1

1− n
√
pnx

.
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Examples/3

All what has been said holds true for characters with values within some
A ∈ k-CAAU. For example, let us consider the polylogarithms and
A = C[zα(1− z)−β]α,β∈R = CR.
We have to suppose Pi , i = 1 . . . 3 in A such that

P1(z) + P2(z) log(z) + P3(z)(log(
1

1− z
)) = 0Ω

and then, either pass to meromorphic functions or use the localized BTT.
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Proof that [1Ω, log(z), log( 1
1−z )] is CR-free.

We first prove that P2 =
∑

i∈F ciz
αi (1− z)βi is zero using the deck

transformation D0 of index one around zero.
One has Dn

0 (
∑

i∈F ciz
αi (1− z)βi ) =

∑
i∈F ciz

αi (1− z)βi e2iπ.nαi , the same
calculation holds for all Pi which proves that all Dn

0 (Pi ) are bounded. But
one has Dn

0 (log(z)) = log(z) + 2iπ.n and then

Dn
0 (P1(z) + P2(z) log(z) + P3(z)(log(

1

1− z
))) =

Dn
0 (P1(z)) + Dn

0 (P2(z))(log(z) + 2iπ.n) + Dn
0 (P3(z)) log(

1

1− z
) = 0

It suffices to build a sequence of integers nj → +∞ such that
limj→∞D

nj
0 (P2(z)) = P2(z) which is a consequence of the following

lemma.
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Lemma

Let us consider a homomorphism ϕ : N→ G where G is a compact
(Hausdorff) group, then it exists uj → +∞ such that

lim
j→∞

ϕ(uj) = e

Proof.

First of all, due to the compactness of G , the sequence ϕ(n) admits a
subsequence ϕ(nk) convergent to some ` ∈ G . Now one can refine the
sequence as nkj such that

0 < nk1 − nk0 < . . . < nkj+1
− nkj < nkj+2

− nkj+1
< . . .

With uj = nkj+1
− nkj one has limj→∞ ϕ(uj) = e.

End of the proof One applies the lemma to the morphism

n 7→ (e2iπ.nαi )i∈F ∈ UF
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Magnus and Hausdorff groups

exp(−A)
exp(−B)

exp(A)
exp(B)

1G

The Magnus group is the set of series with constant term 1X∗ , the Hausdorff

(sub)-group, is the group of group-like series for ∆x . These are also Lie

exponentials (here A,B are Lie series and exp(A)exp(B) = exp(H(A,B))).
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Hausdorff group of the stuffle Hopf algebra.

With Y = {yi}i≥1 and

∆ (yk) = yk ⊗ 1 + 1⊗ yk +
∑
i+j=k

yi ⊗ yj

the bialgebra B = (k〈X 〉, conc, 1X∗ ,∆ , ε) is an enveloping algebra (it is
cocommutative, connex and graded by the weight function given by
||yi1yi2 · · · yik || =

∑k
s=1 is on a word w = yi1yi2 · · · yik ).

With ϕ(yi , yj) = yi+j , (eq.7) gives

(
∑
i≥1

αi yi )
∗ (

∑
j≥1

βj yj)
∗ = (

∑
i≥1

αi yi +
∑
j≥1

βj yj +
∑
i,j≥1

αiβj yi+j)
∗ (11)

This formula suggests us to code, in an umbral style,
∑

k≥1 αk yk by the series∑
k≥1 αk x

k ∈ k+[[x ]]. Indeed, we get the following proposition whose first part,
characteristic-freely describes the group of characters Ξ(B) and its law and the
second part, about the exp-log correspondence, requires k to be Q-algebra.

36 / 51



Proposition

Let πUmbra
Y be the linear isomorphism k+[[x ]]→ k̂.Y defined by∑

n≥1

αn x
n 7→

∑
k≥1

αk yk (12)

Then

1 One has, for S ,T ∈ k+[[x ]],

(πUmbra
Y (S))∗ (πUmbra

Y (T ))∗ = (πUmbra
Y ((1 + S)(1 + T )− 1))∗ (13)

2 From now on k is supposed to be a Q-algebra.

For t ∈ k and T ∈ k+[[x ]], the family ( (t.T )n

n ! )n≥0 is summable and one sets

G (t) = (πUmbra
Y (et.T − 1))∗ (14)
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Proposition (Cont’d)

3 The parametric character G fulfills the “stuffle one-parameter group”
property i.e. for t1, t2 ∈ k, we have

G (t1 + t2) = G (t1) G (t2) ; G (0) = 1Y ∗ (15)

4 We have
G (t) = exp

(
t.πUmbra

Y (T )
)

(16)

5 In particular, calling πUmbra
x the inverse of πUmbra

Y we get, for P∗ ∈ Ξ(B) (in

other words P ∈ k̂.Y ),

log (P∗) = πUmbra
Y (log(1 + πUmbra

x (P))) (17)
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Proof (Sketch)

i) We have

πUmbra
Y (S) =

∑
i≥1

〈S |x i 〉yi πUmbra
Y (T ) =

∑
j≥1

〈T |x j〉yj

and then

(πUmbra
Y (S))∗ (πUmbra

Y (T ))∗ = (
∑
i≥1

〈S |x i 〉yi )∗ (
∑
j≥1

〈T |x j〉yj) =(∑
i≥1

〈S |x i 〉yi ) +
∑
j≥1

〈T |x j〉yj +
∑
i ,j≥1

〈S |x i 〉〈T |x j〉yi+j

)∗
=

(πUmbra
Y (S + T + ST ))∗ = (πUmbra

Y ((1 + S)(1 + T )− 1))∗

ii.1) The one parameter group property is a consequence of (13) applied
to the series eti .T − 1, i = 1, 2.
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Proof (Sketch)/2

ii.2) Property 15 holds for every Q-algebra, in particular in k1 = k[t] and k1〈〈Y 〉〉
is endowed with the structure of a differential ring by term-by-term derivations
(see [8] for formal details). We can write G (t) = 1 + t.G1 + t2.G2(t) (where
G1 = πUmbra

Y (T ) is independent from t) and from 15, we have

G ′(t) = G1.G (t) ; G (0) = 1Y ∗ (18)

but H(t) = exp (t.G1) satisfies 18 whence the equality.
ii.3) At t = 1, we have exp (πUmbra

Y (T )) = (πUmbra
Y (eT − 1))∗ hence, with

P = πUmbra
Y (eT − 1) (take T := log(πUmbra

x (P) + 1))

πUmbra
Y (T ) = log (P∗) [QED] (19)

Application of (17)

(tyk)∗ = exp
(∑

n≥1

(−1)n−1tnynk
n

)
(20)
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Conclusion(s): More applications and perspectives.

1 Star of the plane property (slide 17) holds for non-commutative valued (as
matrix-valued) characters.

2 Combinatorial study of other xϕ one-parameter groups and evolution
equations in convolution algebras.

3 Factorisation of A-valued characters (A k-CAAU).
For example, with

B = (k〈X 〉, x , 1X∗ ,∆conc , ε) , A = (k〈X 〉, x , 1X∗) , χ = Id

(χ is a shuffle character) one has (MRS factorisation)

Γ(χ) =
∑
w∈X∗

Id(w)⊗ w =
∑
w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl) (21)

MRS : (Mélançon, Reutenauer, Schützenberger)
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Conclusion(s): More applications and perspectives./2

4 Deformed version of factorisation above for xϕ (with ϕ associative,
commutative, dualisable and moderate). With

B = (k〈X 〉, xϕ, 1X∗ ,∆conc , ε) , A = (k〈X 〉, xϕ, 1X∗) , χ = Id

(χ is a shuffle character) one has

Γ(χ) =
∑
w∈X∗

Id(w)⊗ w =
∑
w∈X∗

Σw ⊗ Πw =

↘∏
l∈LynX

exp(Σl ⊗ Πl) (22)

5 Holds for all enveloping algebras which are free as k-modules (with Q→ k).
This could help to the combinatorial study of the group of characters of
enveloping algebras of Lie algebras like DKa-Lie algebras and other ones, or
deformed.

aDrinfeld–Kohno.
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Thank you for your attention.
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[10] GD, Quoc Huan Ngô and Vincel Hoang Ngoc Minh, Kleene stars of
the plane, polylogarithms and symmetries, (pp 52-72) TCS 800, 2019,
pp 52-72.

[11] GD, Darij Grinberg, Vincel Hoang Ngoc Minh, Three variations on
the linear independence of grouplikes in a coalgebra,
ArXiv:2009.10970 [math.QA] (Wed, 23 Sep 2020)

45 / 51



[12] Gérard H. E. Duchamp, Christophe Tollu, Karol A. Penson and Gleb
A. Koshevoy, Deformations of Algebras: Twisting and Perturbations ,
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